Pada limit fungsi trigonometri, telah dipelajari bahwa :
Perhatikan bentuk limit ini untuk x→0, limit pembilang dan limit penyebutnya nol. Bentuk demikian dinamakan bentuk tak tentu 0/0. Kita mengenal tujuh macam bentuk tak tentu limit fungsi, yaitu :
Berikut dua teorema penting untuk mempelajari limit-limit tak tentu :
Cara penyelesaian
Menggunakan : Subtitusi
Perkalian akar sekawan
L’Hopital ( penurunan )
Selengkapnya :
Berikut beberapa bentuk sekaligus contoh soalnya :
1.Bentuk tak tentu 0/0 :
Cara penyelesaian : Ubahlah bentuk f(x)/g(x) sehingga sifat-sifat limit fungsi dapat digunakan. Cara yang dapat dicoba adalah menguraikan pembilang dan penyebut, menggunakan rumus trigonometri, merasionalkan bentuk pecahannya, dan sebagainya.
Perhitungan limit bentuk tak tentu 0/0 diberikan dalam contoh berikut :
Contoh Bentuk 0/0 :
2. Bentuk tak tentu ∞/∞ :
Cara penyelesaian : Ubahlah bentuk f(x)/g(x) sehingga sifat-sifat limit fungsi dapat digunakan. Cara yang dapat digunakan adalah merasionalkan bentuk pecahannya, memunculkan bentuk 1/x pangkat n, n bilangan asli, dan sebagainya.
Perhitungan limit bentuk tak tentu ∞/∞ diberikan dalam contoh berikut :
Contoh Bentuk ∞/∞ :
3. Bentuk tak tentu 0.∞ :
Contoh Bentuk tak tentu 0.∞ :
4. Bentuk Tak Tentu ∞ – ∞ :
Contoh Bentuk ∞ – ∞ :
5. Bentuk Tak Tentu
6. Bentuk Tak Tentu
7. Bentuk Tak Tentu
Tidak ada komentar:
Posting Komentar